• Home
  • Resources
    • Find Resources by Topic Tags
    • Cybersecurity Policy Chart
    • CSIAC Reports
    • Webinars
    • Podcasts
    • Cybersecurity Digest
    • Standards & Reference Docs
    • Journals
    • Certifications
    • Acronym DB
    • Cybersecurity Related Websites
  • Services
    • Free Technical Inquiry
    • Core Analysis Task (CAT) Program
    • Subject Matter Expert (SME) Network
    • Training
    • Contact Us
  • Community
    • Upcoming Events
    • Cybersecurity
    • Modeling & Simulation
    • Knowledge Management
    • Software Engineering
  • About
    • About the CSIAC
    • The CSIAC Team
    • Subject Matter Expert (SME) Support
    • DTIC’s IAC Program
    • DTIC’s R&E Gateway
    • DTIC STI Program
    • FAQs
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Login / Register

CSIAC

Cyber Security and Information Systems Information Analysis Center

  • Resources
    • Find Resources by Topic Tags
    • Cybersecurity Policy Chart
    • CSIAC Reports
    • Webinars
    • Podcasts
    • Cybersecurity Digest
    • Standards & Reference Docs
    • Journals
    • Certifications
    • Acronym DB
    • Cybersecurity Websites
  • Services
    • Free Technical Inquiry
    • Core Analysis Task (CAT) Program
    • Subject Matter Expert (SME) Network
    • Training
    • Contact
  • Community
    • Upcoming Events
    • Cybersecurity
    • Modeling & Simulation
    • Knowledge Management
    • Software Engineering
  • About
    • About the CSIAC
    • The CSIAC Team
    • Subject Matter Expert (SME) Support
    • DTIC’s IAC Program
    • DTIC’s R&E Gateway
    • DTIC STI Program
    • FAQs
  • Cybersecurity
  • Modeling & Simulation
  • Knowledge Management
  • Software Engineering
/ CSIAC Reports / 5th Generation (5G) Technology White Paper

5th Generation (5G) Technology White Paper

Posted: 01/07/2019 | Leave a Comment

How would you like to download a 2GB movie in six seconds or less? Well, this next-generation wireless technology will soon be available with the launching of 5G wireless networks along with compatible cellular technologies.

Watch this companion CSIAC Video Podcast: https://www.csiac.org/podcast/5th-generation-5g-technology/

Before we get to 5G, commonly called 5th Generation, let’s take a few moments to discuss an evolution of mobile networks. The 2nd Generation, 2G, was launched in Finland in 1991. 2G enabled mobile networks to provide services such as, voice, text messages and picture messages. 2G utilized Time Division Multiple Access (TDMA) or Code Division Multiple Access (CDMA). There are various TDMA technologies such as: GSM, PDC, iDEN, and iS-136. However, based on today’s standards, 2G is relatively slow, which only had a 21Kbps to 97Kbps speed. 2G was faster than the old modems, but still slow.

Moving onto 3G; 3G was first launched in Japan in October 2001; however, there was a massive delay in the launch of 3G due to incompatibilities between 3G and 2G. In the US, Verizon launched 3G in 2002. 3G was much faster than 2G, with speeds up to 3.1mbps depending on the network. Also, smartphones started to be developed, particularly Apple and Android devices. Besides voice, text, and picture messages, one can send videos over 3G networks

Let’s talk about 4G and 4G LTE. As we can see moving from 2G to 3G, speeds get faster and more data can be delivered. 4G and 4G LTE (Long Term Evolution) have different technologies. 4G LTE was launched in Norway and Sweden in 2009, and 4G was launched in US by Sprint in December 2010. Both 4G and 4G LTE offers more reliable and faster speeds than 3G. Most places offer 4G and 4G LTE, but when users with 4G devices are in areas offering only 3G, smartphones and other devices will switch over to 3G. If this happens you won’t have any talk/voice issues, you will just have slower Internet and download speeds. Speeds for 4G and 4G LTE vary according to networks, with speeds up to 50Mbps, but 4 to 12 Mbps are more common. In addition to text/voice and videos, 4G and 4G LTE offers video teleconferencing and cable streaming video. Many companies world-wide take advantage of teleconferencing, saving time and travel expenses. Numerous cable companies take advantage of Smart TV’s by offering various streaming services such as Netflix, Amazon Prime, Sling TV, YouTube, Hulu, etc. Additionally, besides Apple iPhones and Android devices, iPads and tablets have also hit the marketplace. Finally, there are hundreds of thousands of apps that are available to the users to simplify day-to-day activities.

Now that we have taken a brief look at 2G, 3G, 4G, and 4G LTE technology. Let’s look at 5G technology. Remember in the beginning when I said that one can download a 2GB movie in 6 seconds or less? Well, that can be done with the up-and-coming 5G technology. 5G technology is different from the other technologies and is not compatible with any of them. 5G is built on the 802.11ac Institute of Electrical and Electronics Engineers (IEEE) wireless networking standard. 5G also has the potential to make LAN-based internet in the home obsolete, but will take some time. There are three approaches to 5G: speed, density, and latency. Speeds are anywhere from 10x to 100x faster than 4G. 5G will allow more people on the network at the same time and the latency periods can be less than 1ms.

5G uses high end area, millimeter wavelengths (mmWaves). Millimeter wavelengths do not do well if obstacles are in the way. A leaf can disrupt the mmWave. Millimeter wavelengths do not travel far. In a 5G experiment in Virginia, distances of 10.6km was reached in a direct line-of-site with the transmitter. That is not far, and we will see why shortly. 5G uses Orthogonal Frequency-Division Multiplexing (OFDM) technology. OFDM transmits large amounts of digital data over a radio wave and splits the radio signal into multiple smaller sub-signals.

With only a 10km distance of travel, we will need a more robust infrastructure, including more fiber to support 5G wireless technology. More antennas will need to be placed on towers, telephone poles, lamp posts, etc. These antennas provide a direct line of communication between cells and provide load-balancing of data. With more antennas’ emitting these millimeter wavelengths, health is an immediate concern. As one can image, adding more sensors can be very costly. Costs estimates are as high at $2.5T BY 2035. However, projection for Increase of productivity is $10T by 2035–a sizeable increase.

We will be hearing Internet of Things (IoT) more and more. Basically, IoT is a network of internet-connected objects, such as vehicles, electronic home appliances, software, actuators, and connectivity that exchanges data by relying on sensors. IoT can be called to any physical object connected to the network. IoT allows for longer battery life for sensors.

Now that we have talked a bit about 5G, let’s look at some of the uses. 5G will have a direct impact on agriculture and farming. Real-time communications between farming equipment in the field, and field condition notifications will be possible. Faster upload data to the cloud and more efficient, with less do-overs.

Airports will have better communications between FAA and pilots. There will be better ground operations, better security checkpoints, better runway monitoring, better baggage handling and better building management will be transformed. Beacons and proximity insights will strengthen operations.

The automotive industry will be no different. The industry is moving towards Smart Cars. Smart Cars are autonomous driving vehicles with no drivers. Businesses can be carried on Virtual Reality and Augmented Reality. Passengers can watch movies and play games while traveling to their destination. Vehicle-to-Vehicles (V2V) connectivity will occur for roadway driving, warnings, and instant information on driving conditions, and rapid downloads of ultra-high maps. Autonomous test vehicles are presently on roads in various US cites. Unfortunately, 4G networks does not give the required human-like reflexes required by 5G.

If you live in the city, you’re in luck. IoT can help by using data collected to monitor and manage traffic and transportation systems, power plants, energy grids, water supplies, networks, waste management, law enforcement, information systems, schools, libraries, hospitals, and other community services. As one can see, there is a plethora of services that will be affected by 5G. These services allow more efficiency to build these cities, and allow more services to people. Cost and resources consumption will be reduced; which results in better use of public tax dollars. Energy savings like smart lighting will make for a greener environment. Smart Offices can monitor and control operations to improved lighting, AC, air quality, and well as employee security. Building urban farms in multi-story buildings can provide food from fresh fish to produce and herbs. Use of solar panels and wind turbines will take advantage of free energy. Finally, 5G allows citizens using apps, to report potholes, and other trouble issues via sensors attached to buildings.

5G will allow the unleashing of the next generation for the grid. Devices will be more accurately monitored, and allows for more accurate forecasting and energy needs. A better load-balancing of energy, reducing peak periods, reducing energy costs, and reducing periods of outages. Smart Street Lighting is the first step towards Smart Cities. Smart Street Lighting will automatically dim public lighting when no pedestrians or vehicles are present. Smart Street Lighting is installed in San Diego, with a savings of $1.9m annually; also, Smart Street Lighting is installed in Barcelona, Spain.

Global Position Sensors will get a make-over. Location awareness will become essential. There will be new positional capabilities, better position accuracy, better 3D maps, and real-time positioning will be less than 1ms.

With our aging population, the Health Care industry will be revolutionized. We will see an increase in the effectiveness of preventative care and aid in robotic surgery. The advent of telehealth, and doctors making life-saving decisions remotely will come to fruition. Doctors can view large images remotely within seconds and determine action needed. IoT will allow further increase of data on the network. Telemedicine market is expected to grow exponentially. Use of language translations to help overcome barriers is a huge improvement over present-day practice. Doctors can monitor patients in real-time. Finally, Artificial Intelligence (AI) can be used to determine potential diagnoses.

The New Radio (NR) will have a new air interface for 5G. A new interface will take place between the mobile device and active base station. Designed to significantly improve performance, flexibility, scalability, and efficiency of current mobile networks. The 3rd Generation Partnership Project (3GPP) Technical Specification Group developed standards for 5G NR in early 2016; however, the standards keep evolving as functionality is identified. NR allows for network slicing which creates multiple virtual networks atop a shared physical infrastructure. NR can be specifically configured to support certain cases (e.g. smart home, smart energy grid), etc.).

5G could enhance mobile security. The traditional security gaps associated with data protection in 3G and 4G has vastly improved in the 5G mobile communication standard. Privacy leakage is huge concern, as 5G is not confined to individual customers. More privacy information will be exchanged and privacy protection will be more challenging; a special emphasis will be placed on security and privacy requirements. New Business model approaches are being tested. More stringent authentication methods to prevent unauthorized access to IoT; biometrics identification could be deployed as part of authentication in Smart Homes. 5G security design must allow for the isolation of network nodes, control nodes, and forwarding nodes. Due to heterogeneous network features, security must be built to support different network services and must allow for access to these different networks.

Your home environment will change drastically. 5G along with IPv6 addressing may eliminate the need for home LAN. IPv6 has 2^128 addresses, or 340 undecillion addresses, an enormous amount of addresses, but not a finite amount. One will be able to activate/deactivate security systems, locking and unlocking door and garage door openers, adjust home temperature (including hot water heaters), insure sump pumps are functional, control window shades, and turn on/off lights and numerous appliances.

5G technology will affect trains and railways. The railway will be more secure and reliable, and maintenance of critical railway operations will be possible. There will be better communications between vehicles, cities, devices and sensors, and a substantial increase in real-time passenger service.

The release of 5G should be sometime in 2019, but wider communications are anticipated for 2020. Some cities are investing in 5G by presently installing sensors. The tier-one carriers, such as Verizon, AT&T, Sprint, and T-Mobile are all-in on 5G. Eighteen other smaller carriers are also all in. Verizon presently has 4 cities with 5G: Houston, Indianapolis, Los Angeles, and Sacramento. AT&T has plans of launching in 12 cities in 2019. In terms of world-wide four countries, Qatar, Lesotho (located in South Africa), Finland, and Estonia, are utilizing pre-5G technology standards.

References:

  • http://freewimaxinfo.com/2g-technology.html
  • https://www.google.com/search?q=2g+speed&ie=utf-8&oe=utf-8&client=firefox-b-1
  • https://en.wikipedia.org/wiki/3G_adoption
  • https://whatsag.com/g/generation_history.php
  • https://www.itu.int/itunews/issue/2003/06/thirdgeneration.html
  • https://en.wikipedia.org/wiki/4G
  • https://www.cnet.com/news/verizon-to-launch-4g-wireless-network-december-5/
  • https://www.tccrocks.com/blog/what-is-difference-between-4g-and-4g-lte/
  • https://spectrum.ieee.org/tech-talk/telecom/wireless/millimeter-waves-travel-more-than-10-kilometers-in-rural-virginia

Download Files:

You must be logged in to download this CSIAC Report. Click here to login.

Author

Charlie Merulla
Charlie Merulla
Twenty-Five years' experience in the Information Technology Field working Information Assurance and System/Network Administration. Experience with Cisco IOS, switches/hubs, VPN's, VLAN's, network protocols, IPv6, Windows, and various flavors of Linux operating systems. Migrated numerous DoD systems from DoD Information Assurance Certification and Accreditation (DIACAP) process to the DoD mandated Risk Management Framework (RMF) process, utilizing the Enterprise Mission Assurance Support Service (eMASS) system and Telos Xacta. Presently certified in DoD 8570 IAM Level III.; held other IAT Level III certifications.

Technology Areas: Cybersecurity Tags: 5G, Internet of Things (IoT), Mobile Security

Previous CSIAC Report:
« Malvertising Explored
Next CSIAC Report:
Emerging Developments in Cyberlaw: 2019 »

Reader Interactions

Leave a Comment Cancel

You must be logged in to post a comment.

sidebar

Blog Sidebar

Featured Content

Data Privacy Day - Jan 28

Data Privacy Day is January 28th

You can help create a global community that respects privacy, safeguards data, and enables trust. You can help teach others about privacy at home, at work, and in your community.

Learn How

Featured Subject Matter Expert (SME): Daksha Bhasker

A dynamic CSIAC SME, Senior Principal Cybersecurity Architect, Daksha Bhasker has 20 years of experience in the telecommunications services provider industry. She has worked in systems security design and architecture in production environments of carriers, often leading multidisciplinary teams for cybersecurity integration, from conception to delivery of complex technical solutions. As a CSIAC SME, Daksha's contributions include several published CSIAC Journal articles and a webinar presentation on the sophiscated architectures that phone carriers use to stop robocalls.

View SME's Contributed Content

The DoD Cybersecurity Policy Chart

The DoD Cybersecurity Policy Chart

This chart captures the tremendous breadth of applicable policies, some of which many cybersecurity professionals may not even be aware, in a helpful organizational scheme.

View the Policy Chart

CSIAC Report - Smart Cities, Smart Bases and Secure Cloud Architecture for Resiliency by Design

Integration of Smart City Technologies to create Smart Bases for DoD will require due diligence with respect to the security of the data produced by Internet of Things (IOT) and Industrial Internet of Things (IIOT). This will increase more so with the rollout of 5G and increased automation "at the edge". Commercially, data will be moving to the cloud first, and then stored for process improvement analysis by end-users. As such, implementation of Secure Cloud Architectures is a must. This report provides some use cases and a description of a risk based approach to cloud data security. Clear understanding, adaptation, and implementation of a secure cloud framework will provide the military the means to make progress in becoming a smart military.

Read the Report

CSIAC Journal - Data-Centric Environment: Rise of Internet-Based Modern Warfare “iWar”

CSIAC Journal Cover Volume 7 Number 4

This journal addresses a collection of modern security concerns that range from social media attacks and internet-connected devices to a hypothetical defense strategy for private sector entities.

Read the Journal

CSIAC Journal M&S Special Edition - M&S Applied Across Broad Spectrum Defense and Federal Endeavors

CSIAC Journal Cover Volume 7 Number 3

This Special Edition of the CSIAC Journal highlights a broad array of modeling and simulation contributions – whether in training, testing, experimentation, research, engineering, or other endeavors.

Read the Journal

CSIAC Journal - Resilient Industrial Control Systems (ICS) & Cyber Physical Systems (CPS)

CSIAC Journal Cover Volume 7 Number 2

This edition of the CSIAC Journal focuses on the topic of cybersecurity of Cyber-Physical Systems (CPS), particularly those that make up Critical Infrastructure (CI).

Read the Journal

Recent Video Podcasts

  • Privacy Impact Assessment: The Foundation for Managing Privacy Risk Series: The CSIAC Podcast
  • Agile Condor: Supercomputing at the Edge for Intelligent Analytics Series: CSIAC Webinars
  • Securing the Supply Chain: A Hybrid Approach to Effective SCRM Policies and Procedures Series: The CSIAC Podcast
  • DoD Vulnerability Disclosure Program (VDP) Series: CSIAC Webinars
  • 5 Best Practices for a Secure Infrastructure Series: The CSIAC Podcast
View all Podcasts

Upcoming Events

Thu 21

SANS Cyber Security Central: Jan 2021

January 18 - January 23
Organizer: SANS Institute
Thu 21

SANS Cyber Threat Intelligence Summit 2021

January 21 - January 22
Organizer: SANS Institute
Fri 22

SANS Cyber Threat Intelligence Solutions Track 2021

January 22 @ 09:00 - 17:00 EST
Organizer: SANS Institute
Wed 27

Enterprise Data Governance Online 2021

January 27 @ 08:00 - 13:30 EST
Organizer: DATAVERSITY
Thu 28

Data Privacy Day

January 28
View all Events

Footer

CSIAC Products & Services

  • Free Technical Inquiry
  • Core Analysis Tasks (CATs)
  • Resources
  • Events Calendar
  • Frequently Asked Questions
  • Product Feedback Form

About CSIAC

The CSIAC is a DoD-sponsored Center of Excellence in the fields of Cybersecurity, Software Engineering, Modeling & Simulation, and Knowledge Management & Information Sharing.Learn More

Contact Us

Phone:800-214-7921
Email:info@csiac.org
Address:   266 Genesee St.
Utica, NY 13502
Send us a Message
US Department of Defense Logo USD(R&E) Logo DTIC Logo DoD IACs Logo

Copyright 2012-2021, Quanterion Solutions Incorporated

Sitemap | Privacy Policy | Terms of Use | Accessibility Information
Accessibility / Section 508 | FOIA | Link Disclaimer | No Fear Act | Policy Memoranda | Privacy, Security & Copyright | Recovery Act | USA.Gov

This website uses cookies to provide our services and to improve your experience. By using this site, you consent to the use of our cookies. To read more about the use of our site, please click "Read More". Otherwise, click "Dismiss" to hide this notice. Dismiss Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.